• About Us
  • Privacy Policy
  • Disclaimer
  • Contact Us
AimactGrow
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing
No Result
View All Result
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing
No Result
View All Result
AimactGrow
No Result
View All Result

Methods to Construct a Protected, Autonomous Prior Authorization Agent for Healthcare Income Cycle Administration with Human-in-the-Loop Controls

Admin by Admin
January 16, 2026
Home AI
Share on FacebookShare on Twitter


def _now_iso() -> str:
   return datetime.utcnow().change(microsecond=0).isoformat() + "Z"


def _stable_id(prefix: str, seed: str) -> str:
   h = hashlib.sha256(seed.encode("utf-8")).hexdigest()[:10]
   return f"{prefix}_{h}"


class MockEHR:
   def __init__(self):
       self.orders_queue: Listing[SurgeryOrder] = []
       self.patient_docs: Dict[str, List[ClinicalDocument]] = {}


   def seed_data(self, n_orders: int = 5):
       random.seed(7)


       def make_patient(i: int) -> Affected person:
           pid = f"PT{i:04d}"
           plan = random.selection(listing(InsurancePlan))
           return Affected person(
               patient_id=pid,
               identify=f"Affected person {i}",
               dob="1980-01-01",
               member_id=f"M{i:08d}",
               plan=plan,
           )


       def docs_for_order(affected person: Affected person, surgical procedure: SurgeryType) -> Listing[ClinicalDocument]:
           base = [
               ClinicalDocument(
                   doc_id=_stable_id("DOC", patient.patient_id + "H&P"),
                   doc_type=DocType.H_AND_P,
                   created_at=_now_iso(),
                   content="H&P: Relevant history, exam findings, and surgical indication.",
                   source="EHR",
               ),
               ClinicalDocument(
                   doc_id=_stable_id("DOC", patient.patient_id + "NOTE"),
                   doc_type=DocType.CLINICAL_NOTE,
                   created_at=_now_iso(),
                   content="Clinical note: Symptoms, conservative management attempted, clinician assessment.",
                   source="EHR",
               ),
               ClinicalDocument(
                   doc_id=_stable_id("DOC", patient.patient_id + "MEDS"),
                   doc_type=DocType.MED_LIST,
                   created_at=_now_iso(),
                   content="Medication list: Current meds, allergies, contraindications.",
                   source="EHR",
               ),
           ]


           possibly = []
           if surgical procedure in [SurgeryType.KNEE_ARTHROPLASTY, SurgeryType.SPINE_FUSION, SurgeryType.BARIATRIC]:
               possibly.append(
                   ClinicalDocument(
                       doc_id=_stable_id("DOC", affected person.patient_id + "LABS"),
                       doc_type=DocType.LABS,
                       created_at=_now_iso(),
                       content material="Labs: CBC/CMP inside final 30 days.",
                       supply="LabSystem",
                   )
               )


           if surgical procedure in [SurgeryType.SPINE_FUSION, SurgeryType.KNEE_ARTHROPLASTY]:
               possibly.append(
                   ClinicalDocument(
                       doc_id=_stable_id("DOC", affected person.patient_id + "IMG"),
                       doc_type=DocType.IMAGING,
                       created_at=_now_iso(),
                       content material="Imaging: MRI/X-ray report supporting prognosis and severity.",
                       supply="Radiology",
                   )
               )


           ultimate = base + [d for d in maybe if random.random() > 0.35]


           if random.random() > 0.6:
               ultimate.append(
                   ClinicalDocument(
                       doc_id=_stable_id("DOC", affected person.patient_id + "PRIOR_TX"),
                       doc_type=DocType.PRIOR_TX,
                       created_at=_now_iso(),
                       content material="Prior therapies: PT, meds, injections tried over 6+ weeks.",
                       supply="EHR",
                   )
               )


           if random.random() > 0.5:
               ultimate.append(
                   ClinicalDocument(
                       doc_id=_stable_id("DOC", affected person.patient_id + "CONSENT"),
                       doc_type=DocType.CONSENT,
                       created_at=_now_iso(),
                       content material="Consent: Signed process consent and threat disclosure.",
                       supply="EHR",
                   )
               )


           return ultimate


       for i in vary(1, n_orders + 1):
           affected person = make_patient(i)
           surgical procedure = random.selection(listing(SurgeryType))
           order = SurgeryOrder(
               order_id=_stable_id("ORD", affected person.patient_id + surgical procedure.worth),
               affected person=affected person,
               surgery_type=surgical procedure,
               scheduled_date=(datetime.utcnow().date() + timedelta(days=random.randint(3, 21))).isoformat(),
               ordering_provider_npi=str(random.randint(1000000000, 1999999999)),
               diagnosis_codes=["M17.11", "M54.5"] if surgical procedure != SurgeryType.CATARACT else ["H25.9"],
               created_at=_now_iso(),
           )
           self.orders_queue.append(order)
           self.patient_docs[patient.patient_id] = docs_for_order(affected person, surgical procedure)


   def poll_new_surgery_orders(self, max_n: int = 1) -> Listing[SurgeryOrder]:
       pulled = self.orders_queue[:max_n]
       self.orders_queue = self.orders_queue[max_n:]
       return pulled


   def get_patient_documents(self, patient_id: str) -> Listing[ClinicalDocument]:
       return listing(self.patient_docs.get(patient_id, []))


   def fetch_additional_docs(self, patient_id: str, wanted: Listing[DocType]) -> Listing[ClinicalDocument]:
       generated = []
       for dt in wanted:
           generated.append(
               ClinicalDocument(
                   doc_id=_stable_id("DOC", patient_id + dt.worth + str(time.time())),
                   doc_type=dt,
                   created_at=_now_iso(),
                   content material=f"Auto-collected doc for {dt.worth}: extracted and formatted per payer coverage.",
                   supply="AutoCollector",
               )
           )
       self.patient_docs.setdefault(patient_id, []).lengthen(generated)
       return generated


class MockPayerPortal:
   def __init__(self):
       self.db: Dict[str, Dict[str, Any]] = {}
       random.seed(11)


   def required_docs_policy(self, plan: InsurancePlan, surgical procedure: SurgeryType) -> Listing[DocType]:
       base = [DocType.H_AND_P, DocType.CLINICAL_NOTE, DocType.MED_LIST]
       if surgical procedure in [SurgeryType.SPINE_FUSION, SurgeryType.KNEE_ARTHROPLASTY]:
           base += [DocType.IMAGING, DocType.LABS, DocType.PRIOR_TX]
       if surgical procedure == SurgeryType.BARIATRIC:
           base += [DocType.LABS, DocType.PRIOR_TX]
       if plan in [InsurancePlan.PAYER_BETA, InsurancePlan.PAYER_GAMMA]:
           base += [DocType.CONSENT]
       return sorted(listing(set(base)), key=lambda x: x.worth)


   def submit(self, pa: PriorAuthRequest) -> PayerResponse:
       payer_ref = _stable_id("PAYREF", pa.request_id + _now_iso())
       docs_present = {d.doc_type for d in pa.docs_attached}
       required = self.required_docs_policy(pa.order.affected person.plan, pa.order.surgery_type)
       lacking = [d for d in required if d not in docs_present]


       self.db[payer_ref] = {
           "standing": AuthStatus.SUBMITTED,
           "order_id": pa.order.order_id,
           "plan": pa.order.affected person.plan,
           "surgical procedure": pa.order.surgery_type,
           "lacking": lacking,
           "polls": 0,
           "submitted_at": _now_iso(),
           "denial_reason": None,
       }


       msg = "Submission obtained. Case queued for evaluation."
       if lacking:
           msg += " Preliminary validation signifies incomplete documentation."
       return PayerResponse(standing=AuthStatus.SUBMITTED, payer_ref=payer_ref, message=msg)


   def check_status(self, payer_ref: str) -> PayerResponse:
       if payer_ref not in self.db:
           return PayerResponse(
               standing=AuthStatus.DENIED,
               payer_ref=payer_ref,
               message="Case not discovered (doable payer system error).",
               denial_reason=DenialReason.OTHER,
               confidence=0.4,
           )


       case = self.db[payer_ref]
       case["polls"] += 1


       if case["status"] == AuthStatus.SUBMITTED and case["polls"] >= 1:
           case["status"] = AuthStatus.IN_REVIEW


       if case["status"] == AuthStatus.IN_REVIEW and case["polls"] >= 3:
           if case["missing"]:
               case["status"] = AuthStatus.DENIED
               case["denial_reason"] = DenialReason.MISSING_DOCS
           else:
               roll = random.random()
               if roll < 0.10:
                   case["status"] = AuthStatus.DENIED
                   case["denial_reason"] = DenialReason.CODING_ISSUE
               elif roll < 0.18:
                   case["status"] = AuthStatus.DENIED
                   case["denial_reason"] = DenialReason.MEDICAL_NECESSITY
               else:
                   case["status"] = AuthStatus.APPROVED


       if case["status"] == AuthStatus.DENIED:
           dr = case["denial_reason"] or DenialReason.OTHER
           lacking = case["missing"] if dr == DenialReason.MISSING_DOCS else []
           conf = 0.9 if dr != DenialReason.OTHER else 0.55
           return PayerResponse(
               standing=AuthStatus.DENIED,
               payer_ref=payer_ref,
               message=f"Denied. Purpose={dr.worth}.",
               denial_reason=dr,
               missing_docs=lacking,
               confidence=conf,
           )


       if case["status"] == AuthStatus.APPROVED:
           return PayerResponse(
               standing=AuthStatus.APPROVED,
               payer_ref=payer_ref,
               message="Accepted. Authorization issued.",
               confidence=0.95,
           )


       return PayerResponse(
           standing=case["status"],
           payer_ref=payer_ref,
           message=f"Standing={case['status'].worth}. Polls={case['polls']}.",
           confidence=0.9,
       )


   def file_appeal(self, payer_ref: str, appeal_text: str, attached_docs: Listing[ClinicalDocument]) -> PayerResponse:
       if payer_ref not in self.db:
           return PayerResponse(
               standing=AuthStatus.DENIED,
               payer_ref=payer_ref,
               message="Attraction failed: case not discovered.",
               denial_reason=DenialReason.OTHER,
               confidence=0.4,
           )


       case = self.db[payer_ref]
       docs_present = {d.doc_type for d in attached_docs}
       still_missing = [d for d in case["missing"] if d not in docs_present]
       case["missing"] = still_missing
       case["status"] = AuthStatus.APPEALED
       case["polls"] = 0


       msg = "Attraction submitted and queued for evaluation."
       if still_missing:
           msg += f" Warning: nonetheless lacking {', '.be a part of([d.value for d in still_missing])}."
       return PayerResponse(standing=AuthStatus.APPEALED, payer_ref=payer_ref, message=msg, confidence=0.9)
Tags: AgentAuthorizationAutonomousBuildControlsCycleHealthcareHumanintheLoopManagementPriorRevenueSafe
Admin

Admin

Next Post
What’s !vital #3: Popover Context Menus, @scope, New Internet Platform Options, and Extra

What’s !vital #3: Popover Context Menus, @scope, New Internet Platform Options, and Extra

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended.

Strive AI-powered website positioning with 10 free Sparks. • Yoast

Strive AI-powered website positioning with 10 free Sparks. • Yoast

July 30, 2025
The place is your N + 1?

“How do I get essentially the most of out my individuals?”

May 22, 2025

Trending.

The right way to Defeat Imagawa Tomeji

The right way to Defeat Imagawa Tomeji

September 28, 2025
How you can open the Antechamber and all lever places in Blue Prince

How you can open the Antechamber and all lever places in Blue Prince

April 14, 2025
Satellite tv for pc Navigation Methods Going through Rising Jamming and Spoofing Assaults

Satellite tv for pc Navigation Methods Going through Rising Jamming and Spoofing Assaults

March 26, 2025
The most effective methods to take notes for Blue Prince, from Blue Prince followers

The most effective methods to take notes for Blue Prince, from Blue Prince followers

April 20, 2025
Exporting a Material Simulation from Blender to an Interactive Three.js Scene

Exporting a Material Simulation from Blender to an Interactive Three.js Scene

August 20, 2025

AimactGrow

Welcome to AimactGrow, your ultimate source for all things technology! Our mission is to provide insightful, up-to-date content on the latest advancements in technology, coding, gaming, digital marketing, SEO, cybersecurity, and artificial intelligence (AI).

Categories

  • AI
  • Coding
  • Cybersecurity
  • Digital marketing
  • Gaming
  • SEO
  • Technology

Recent News

12 High Net Design Instruments and Sources for 2026 – AI and Inventive Picks

12 High Net Design Instruments and Sources for 2026 – AI and Inventive Picks

January 27, 2026
5 Helpful Amazon Options You are Not Utilizing (However Completely Ought to)

5 Helpful Amazon Options You are Not Utilizing (However Completely Ought to)

January 27, 2026
  • About Us
  • Privacy Policy
  • Disclaimer
  • Contact Us

© 2025 https://blog.aimactgrow.com/ - All Rights Reserved

No Result
View All Result
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing

© 2025 https://blog.aimactgrow.com/ - All Rights Reserved