• About Us
  • Privacy Policy
  • Disclaimer
  • Contact Us
AimactGrow
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing
No Result
View All Result
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing
No Result
View All Result
AimactGrow
No Result
View All Result

How Machine Studying and Semantic Embeddings Reorder CVE Vulnerabilities Past Uncooked CVSS Scores

Admin by Admin
January 25, 2026
Home AI
Share on FacebookShare on Twitter


def visualize_results(df, priority_scores, feature_importance):
   fig, axes = plt.subplots(2, 3, figsize=(18, 10))
   fig.suptitle('Vulnerability Scanner - ML Evaluation Dashboard', fontsize=16, fontweight="daring")
   axes[0, 0].hist(priority_scores, bins=30, colour="crimson", alpha=0.7, edgecolor="black")
   axes[0, 0].set_xlabel('Precedence Rating')
   axes[0, 0].set_ylabel('Frequency')
   axes[0, 0].set_title('Precedence Rating Distribution')
   axes[0, 0].axvline(np.percentile(priority_scores, 75), colour="orange", linestyle="--", label="seventy fifth percentile")
   axes[0, 0].legend()
   axes[0, 1].scatter(df['cvss_score'], priority_scores, alpha=0.6, c=priority_scores, cmap='RdYlGn_r', s=50)
   axes[0, 1].set_xlabel('CVSS Rating')
   axes[0, 1].set_ylabel('ML Precedence Rating')
   axes[0, 1].set_title('CVSS vs ML Precedence')
   axes[0, 1].plot([0, 10], [0, 1], 'k--', alpha=0.3)
   severity_counts = df['severity'].value_counts()
   colours = {'CRITICAL': 'darkred', 'HIGH': 'purple', 'MEDIUM': 'orange', 'LOW': 'yellow'}
   axes[0, 2].bar(severity_counts.index, severity_counts.values, colour=[colors.get(s, 'gray') for s in severity_counts.index])
   axes[0, 2].set_xlabel('Severity')
   axes[0, 2].set_ylabel('Rely')
   axes[0, 2].set_title('Severity Distribution')
   axes[0, 2].tick_params(axis="x", rotation=45)
   top_features = feature_importance.head(10)
   axes[1, 0].barh(top_features['feature'], top_features['importance'], colour="steelblue")
   axes[1, 0].set_xlabel('Significance')
   axes[1, 0].set_title('High 10 Characteristic Significance')
   axes[1, 0].invert_yaxis()
   if 'cluster' in df.columns:
       cluster_counts = df['cluster'].value_counts().sort_index()
       axes[1, 1].bar(cluster_counts.index, cluster_counts.values, colour="teal", alpha=0.7)
       axes[1, 1].set_xlabel('Cluster')
       axes[1, 1].set_ylabel('Rely')
       axes[1, 1].set_title('Vulnerability Clusters')
   attack_vector_counts = df['attack_vector'].value_counts()
   axes[1, 2].pie(attack_vector_counts.values, labels=attack_vector_counts.index, autopct="%1.1f%%", startangle=90)
   axes[1, 2].set_title('Assault Vector Distribution')
   plt.tight_layout()
   plt.present()


def primary():
   print("="*70)
   print("AI-ASSISTED VULNERABILITY SCANNER WITH ML PRIORITIZATION")
   print("="*70)
   print()
   fetcher = CVEDataFetcher()
   df = fetcher.fetch_recent_cves(days=30, max_results=50)
   print(f"Dataset Overview:")
   print(f"  Complete CVEs: {len(df)}")
   print(f"  Date Vary: {df['published'].min()[:10]} to {df['published'].max()[:10]}")
   print(f"  Severity Breakdown: {df['severity'].value_counts().to_dict()}")
   print()
   feature_extractor = VulnerabilityFeatureExtractor()
   embeddings = feature_extractor.extract_semantic_features(df['description'].tolist())
   df = feature_extractor.extract_keyword_features(df)
   df = feature_extractor.encode_categorical_features(df)
   prioritizer = VulnerabilityPrioritizer()
   X = prioritizer.prepare_features(df, embeddings)
   severity_map = {'LOW': 0, 'MEDIUM': 1, 'HIGH': 2, 'CRITICAL': 3, 'UNKNOWN': 1}
   y_severity = df['severity'].map(severity_map).values
   y_score = df['cvss_score'].values
   X_scaled = prioritizer.train_models(X, y_severity, y_score)
   priority_scores, severity_probs, score_preds = prioritizer.predict_priority(X)
   df['ml_priority_score'] = priority_scores
   df['predicted_score'] = score_preds
   analyzer = VulnerabilityAnalyzer(n_clusters=5)
   clusters = analyzer.cluster_vulnerabilities(embeddings)
   df = analyzer.analyze_clusters(df, clusters)
   feature_imp, emb_imp = prioritizer.get_feature_importance()
   print(f"n--- Characteristic Significance ---")
   print(feature_imp.head(10))
   print(f"nAverage embedding significance: {emb_imp:.4f}")
   print("n" + "="*70)
   print("TOP 10 PRIORITY VULNERABILITIES")
   print("="*70)
   top_vulns = df.nlargest(10, 'ml_priority_score')[['cve_id', 'cvss_score', 'ml_priority_score', 'severity', 'description']]
   for idx, row in top_vulns.iterrows():
       print(f"n{row['cve_id']} [Priority: {row['ml_priority_score']:.3f}]")
       print(f"  CVSS: {row['cvss_score']:.1f} | Severity: {row['severity']}")
       print(f"  {row['description'][:100]}...")
   print("nnGenerating visualizations...")
   visualize_results(df, priority_scores, feature_imp)
   print("n" + "="*70)
   print("ANALYSIS COMPLETE")
   print("="*70)
   print(f"nResults abstract:")
   print(f"  Excessive Precedence (>0.7): {(priority_scores > 0.7).sum()} vulnerabilities")
   print(f"  Medium Precedence (0.4-0.7): {((priority_scores >= 0.4) & (priority_scores <= 0.7)).sum()}")
   print(f"  Low Precedence (<0.4): {(priority_scores < 0.4).sum()}")
   return df, prioritizer, analyzer


if __name__ == "__main__":
   results_df, prioritizer, analyzer = primary()
   print("n✓ All analyses accomplished efficiently!")
   print("nYou can now:")
   print("  - Entry outcomes through 'results_df' DataFrame")
   print("  - Use 'prioritizer' to foretell new vulnerabilities")
   print("  - Discover 'analyzer' for clustering insights")
Tags: CVECVSSEmbeddingsLearningMachineRAWReorderscoresSemanticVulnerabilities
Admin

Admin

Next Post
Person Knowledge Is Vital In Google’s Rating Methods. What We Realized From Liz Reid’s Enchantment Declaration

Person Knowledge Is Vital In Google’s Rating Methods. What We Realized From Liz Reid’s Enchantment Declaration

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended.

Undertaking possession (fairness and fairness)

The empathy of directions | Seth’s Weblog

January 21, 2026
Orbital Mechanics (or How I Optimized a CSS Keyframes Animation)

Orbital Mechanics (or How I Optimized a CSS Keyframes Animation)

May 9, 2025

Trending.

The right way to Defeat Imagawa Tomeji

The right way to Defeat Imagawa Tomeji

September 28, 2025
How you can open the Antechamber and all lever places in Blue Prince

How you can open the Antechamber and all lever places in Blue Prince

April 14, 2025
Satellite tv for pc Navigation Methods Going through Rising Jamming and Spoofing Assaults

Satellite tv for pc Navigation Methods Going through Rising Jamming and Spoofing Assaults

March 26, 2025
The most effective methods to take notes for Blue Prince, from Blue Prince followers

The most effective methods to take notes for Blue Prince, from Blue Prince followers

April 20, 2025
Exporting a Material Simulation from Blender to an Interactive Three.js Scene

Exporting a Material Simulation from Blender to an Interactive Three.js Scene

August 20, 2025

AimactGrow

Welcome to AimactGrow, your ultimate source for all things technology! Our mission is to provide insightful, up-to-date content on the latest advancements in technology, coding, gaming, digital marketing, SEO, cybersecurity, and artificial intelligence (AI).

Categories

  • AI
  • Coding
  • Cybersecurity
  • Digital marketing
  • Gaming
  • SEO
  • Technology

Recent News

12 High Net Design Instruments and Sources for 2026 – AI and Inventive Picks

12 High Net Design Instruments and Sources for 2026 – AI and Inventive Picks

January 27, 2026
5 Helpful Amazon Options You are Not Utilizing (However Completely Ought to)

5 Helpful Amazon Options You are Not Utilizing (However Completely Ought to)

January 27, 2026
  • About Us
  • Privacy Policy
  • Disclaimer
  • Contact Us

© 2025 https://blog.aimactgrow.com/ - All Rights Reserved

No Result
View All Result
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing

© 2025 https://blog.aimactgrow.com/ - All Rights Reserved