• About Us
  • Privacy Policy
  • Disclaimer
  • Contact Us
AimactGrow
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing
No Result
View All Result
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing
No Result
View All Result
AimactGrow
No Result
View All Result

Construct Customized AI Instruments for Your AI Brokers that Mix Machine Studying and Statistical Evaluation

Admin by Admin
June 29, 2025
Home AI
Share on FacebookShare on Twitter


class IntelligentDataAnalyzer(BaseTool):
   identify: str = "intelligent_data_analyzer"
   description: str = "Superior information evaluation device that performs statistical evaluation, machine studying clustering, outlier detection, correlation evaluation, and generates visualizations with actionable insights."
   args_schema: sort[BaseModel] = DataAnalysisInput
   response_format: str = "content_and_artifact"
  
   def _run(self, information: Record[Dict], analysis_type: str = "complete", target_column: Optionally available[str] = None, max_clusters: int = 5) -> Tuple[str, Dict]:
       strive:
           df = pd.DataFrame(information)
           if df.empty:
               increase ToolException("Dataset is empty")
          
           insights = {"dataset_info": self._get_dataset_info(df)}
          
           if analysis_type in ["comprehensive", "correlation"]:
               insights["correlation_analysis"] = self._correlation_analysis(df)
           if analysis_type in ["comprehensive", "clustering"]:
               insights["clustering_analysis"] = self._clustering_analysis(df, max_clusters)
           if analysis_type in ["comprehensive", "outlier"]:
               insights["outlier_detection"] = self._outlier_detection(df)
          
           if target_column and target_column in df.columns:
               insights["target_analysis"] = self._target_analysis(df, target_column)
          
           suggestions = self._generate_recommendations(df, insights)
           abstract = self._create_analysis_summary(insights, suggestions)
          
           artifact = {
               "insights": insights,
               "suggestions": suggestions,
               "data_shape": df.form,
               "analysis_type": analysis_type,
               "numeric_columns": df.select_dtypes(embody=[np.number]).columns.tolist(),
               "categorical_columns": df.select_dtypes(embody=['object']).columns.tolist()
           }
          
           return abstract, artifact
          
       besides Exception as e:
           increase ToolException(f"Evaluation failed: {str(e)}")
  
   def _get_dataset_info(self, df: pd.DataFrame) -> Dict:
       return {
           "form": df.form,
           "columns": df.columns.tolist(),
           "dtypes": df.dtypes.astype(str).to_dict(),
           "missing_values": df.isnull().sum().to_dict(),
           "memory_usage": df.memory_usage(deep=True).sum()
       }
  
   def _correlation_analysis(self, df: pd.DataFrame) -> Dict:
       numeric_df = df.select_dtypes(embody=[np.number])
       if numeric_df.empty:
           return {"message": "No numeric columns for correlation evaluation"}
      
       corr_matrix = numeric_df.corr()
       strong_corr = []
       for i in vary(len(corr_matrix.columns)):
           for j in vary(i+1, len(corr_matrix.columns)):
               corr_val = corr_matrix.iloc[i, j]
               if abs(corr_val) > 0.7:
                   strong_corr.append({"var1": corr_matrix.columns[i], "var2": corr_matrix.columns[j], "correlation": spherical(corr_val, 3)})
      
       return {
           "correlation_matrix": corr_matrix.spherical(3).to_dict(),
           "strong_correlations": strong_corr,
           "avg_correlation": spherical(corr_matrix.values[np.triu_indices_from(corr_matrix.values, k=1)].imply(), 3)
       }
  
   def _clustering_analysis(self, df: pd.DataFrame, max_clusters: int) -> Dict:
       numeric_df = df.select_dtypes(embody=[np.number]).dropna()
       if numeric_df.form[0] < 2 or numeric_df.form[1] < 2:
           return {"message": "Inadequate numeric information for clustering"}
      
       scaler = StandardScaler()
       scaled_data = scaler.fit_transform(numeric_df)
      
       inertias = []
       K_range = vary(1, min(max_clusters + 1, len(numeric_df) // 2 + 1))
      
       for okay in K_range:
           kmeans = KMeans(n_clusters=okay, random_state=42, n_init=10)
           kmeans.match(scaled_data)
           inertias.append(kmeans.inertia_)
      
       optimal_k = self._find_elbow_point(inertias, K_range)
       kmeans = KMeans(n_clusters=optimal_k, random_state=42, n_init=10)
       cluster_labels = kmeans.fit_predict(scaled_data)
      
       cluster_stats = {}
       for i in vary(optimal_k):
           cluster_data = numeric_df[cluster_labels == i]
           cluster_stats[f"cluster_{i}"] = {
               "measurement": len(cluster_data),
               "share": spherical(len(cluster_data) / len(numeric_df) * 100, 1),
               "means": cluster_data.imply().spherical(3).to_dict()
           }
      
       return {
           "optimal_clusters": optimal_k,
           "cluster_stats": cluster_stats,
           "silhouette_score": spherical(silhouette_score(scaled_data, cluster_labels), 3) if len(set(cluster_labels)) > 1 else 0.0,
           "inertias": inertias
       }
  
   def _outlier_detection(self, df: pd.DataFrame) -> Dict:
       numeric_df = df.select_dtypes(embody=[np.number])
       if numeric_df.empty:
           return {"message": "No numeric columns for outlier detection"}
      
       outliers = {}
       for col in numeric_df.columns:
           information = numeric_df[col].dropna()
           Q1, Q3 = information.quantile(0.25), information.quantile(0.75)
           IQR = Q3 - Q1
           iqr_outliers = information[(data < Q1 - 1.5 * IQR) | (data > Q3 + 1.5 * IQR)]
           z_scores = np.abs((information - information.imply()) / information.std())
           z_outliers = information[z_scores > 3]
          
           outliers[col] = {
               "iqr_outliers": len(iqr_outliers),
               "z_score_outliers": len(z_outliers),
               "outlier_percentage": spherical(len(iqr_outliers) / len(information) * 100, 2)
           }
      
       return outliers
  
   def _target_analysis(self, df: pd.DataFrame, target_col: str) -> Dict:
       if target_col not in df.columns:
           return {"error": f"Column {target_col} not discovered"}
      
       target_data = df[target_col].dropna()
      
       if pd.api.varieties.is_numeric_dtype(target_data):
           return {
               "sort": "numeric",
               "stats": {
                   "imply": spherical(target_data.imply(), 3),
                   "median": spherical(target_data.median(), 3),
                   "std": spherical(target_data.std(), 3),
                   "skewness": spherical(target_data.skew(), 3),
                   "kurtosis": spherical(target_data.kurtosis(), 3)
               },
               "distribution": "regular" if abs(target_data.skew()) < 0.5 else "skewed"
           }
       else:
           value_counts = target_data.value_counts()
           return {
               "sort": "categorical",
               "unique_values": len(value_counts),
               "most_common": value_counts.head(5).to_dict(),
               "entropy": spherical(-sum((p := value_counts / len(target_data)) * np.log2(p + 1e-10)), 3)
           }
  
   def _generate_recommendations(self, df: pd.DataFrame, insights: Dict) -> Record[str]:
       suggestions = []
      
       missing_pct = sum(insights["dataset_info"]["missing_values"].values()) / (df.form[0] * df.form[1]) * 100
       if missing_pct > 10:
           suggestions.append(f"Think about information imputation - {missing_pct:.1f}% lacking values detected")
      
       if "correlation_analysis" in insights and insights["correlation_analysis"].get("strong_correlations"):
           suggestions.append("Sturdy correlations detected - contemplate characteristic choice or dimensionality discount")
      
       if "clustering_analysis" in insights:
           cluster_info = insights["clustering_analysis"]
           if isinstance(cluster_info, dict) and "optimal_clusters" in cluster_info:
               suggestions.append(f"Knowledge segments into {cluster_info['optimal_clusters']} distinct teams - helpful for focused methods")
      
       if "outlier_detection" in insights:
           high_outlier_cols = [col for col, info in insights["outlier_detection"].objects() if isinstance(information, dict) and information.get("outlier_percentage", 0) > 5]
           if high_outlier_cols:
               suggestions.append(f"Excessive outlier share in: {', '.be a part of(high_outlier_cols)} - examine information high quality")
      
       return suggestions if suggestions else ["Data appears well-structured with no immediate concerns"]
  
   def _create_analysis_summary(self, insights: Dict, suggestions: Record[str]) -> str:
       dataset_info = insights["dataset_info"]
       abstract = f"""📊 INTELLIGENT DATA ANALYSIS COMPLETE


Dataset Overview: {dataset_info['shape'][0]} rows × {dataset_info['shape'][1]} columns
Numeric Options: {len([c for c, t in dataset_info['dtypes'].objects() if 'int' in t or 'float' in t])}
Categorical Options: {len([c for c, t in dataset_info['dtypes'].objects() if 'object' in t])}


Key Insights Generated:
• Statistical correlations and relationships recognized
• Clustering patterns found for segmentation
• Outlier detection accomplished for information high quality evaluation
• Function significance and distribution evaluation carried out


Prime Suggestions:
{chr(10).be a part of('• ' + rec for rec in suggestions[:3])}


Evaluation consists of ML-powered clustering, statistical correlations, and actionable enterprise insights."""
      
       return abstract
  
   def _find_elbow_point(self, inertias: Record[float], k_range: vary) -> int:
       if len(inertias) < 3:
           return record(k_range)[0]
       diffs = [inertias[i-1] - inertias[i] for i in vary(1, len(inertias))]
       return record(k_range)[diffs.index(max(diffs)) + 1] if diffs else record(k_range)[0]
Tags: agentsAnalysisBuildCombineCustomLearningMachineStatisticaltools
Admin

Admin

Next Post
How To Use Paid Search & Social Adverts For Selling Occasions

How To Use Paid Search & Social Advertisements For Selling Occasions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended.

Matrix Sentinels: Constructing Dynamic Particle Trails with TSL

Matrix Sentinels: Constructing Dynamic Particle Trails with TSL

May 6, 2025
The MIT-Portugal Program enters Section 4 | MIT Information

The MIT-Portugal Program enters Section 4 | MIT Information

April 30, 2025

Trending.

Industrial-strength April Patch Tuesday covers 135 CVEs – Sophos Information

Industrial-strength April Patch Tuesday covers 135 CVEs – Sophos Information

April 10, 2025
How you can open the Antechamber and all lever places in Blue Prince

How you can open the Antechamber and all lever places in Blue Prince

April 14, 2025
Expedition 33 Guides, Codex, and Construct Planner

Expedition 33 Guides, Codex, and Construct Planner

April 26, 2025
Wormable AirPlay Flaws Allow Zero-Click on RCE on Apple Units by way of Public Wi-Fi

Wormable AirPlay Flaws Allow Zero-Click on RCE on Apple Units by way of Public Wi-Fi

May 5, 2025
ManageEngine Trade Reporter Plus Vulnerability Allows Distant Code Execution

ManageEngine Trade Reporter Plus Vulnerability Allows Distant Code Execution

June 10, 2025

AimactGrow

Welcome to AimactGrow, your ultimate source for all things technology! Our mission is to provide insightful, up-to-date content on the latest advancements in technology, coding, gaming, digital marketing, SEO, cybersecurity, and artificial intelligence (AI).

Categories

  • AI
  • Coding
  • Cybersecurity
  • Digital marketing
  • Gaming
  • SEO
  • Technology

Recent News

Slate Auto drops ‘below $20,000’ pricing after Trump administration ends federal EV tax credit score

Slate Auto drops ‘below $20,000’ pricing after Trump administration ends federal EV tax credit score

July 4, 2025
Primarily based on Influencer’s Prime Posts

Primarily based on Influencer’s Prime Posts

July 4, 2025
  • About Us
  • Privacy Policy
  • Disclaimer
  • Contact Us

© 2025 https://blog.aimactgrow.com/ - All Rights Reserved

No Result
View All Result
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing

© 2025 https://blog.aimactgrow.com/ - All Rights Reserved