• About Us
  • Privacy Policy
  • Disclaimer
  • Contact Us
AimactGrow
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing
No Result
View All Result
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing
No Result
View All Result
AimactGrow
No Result
View All Result

Construct Customized AI Instruments for Your AI Brokers that Mix Machine Studying and Statistical Evaluation

Admin by Admin
June 29, 2025
Home AI
Share on FacebookShare on Twitter


class IntelligentDataAnalyzer(BaseTool):
   identify: str = "intelligent_data_analyzer"
   description: str = "Superior information evaluation device that performs statistical evaluation, machine studying clustering, outlier detection, correlation evaluation, and generates visualizations with actionable insights."
   args_schema: sort[BaseModel] = DataAnalysisInput
   response_format: str = "content_and_artifact"
  
   def _run(self, information: Record[Dict], analysis_type: str = "complete", target_column: Optionally available[str] = None, max_clusters: int = 5) -> Tuple[str, Dict]:
       strive:
           df = pd.DataFrame(information)
           if df.empty:
               increase ToolException("Dataset is empty")
          
           insights = {"dataset_info": self._get_dataset_info(df)}
          
           if analysis_type in ["comprehensive", "correlation"]:
               insights["correlation_analysis"] = self._correlation_analysis(df)
           if analysis_type in ["comprehensive", "clustering"]:
               insights["clustering_analysis"] = self._clustering_analysis(df, max_clusters)
           if analysis_type in ["comprehensive", "outlier"]:
               insights["outlier_detection"] = self._outlier_detection(df)
          
           if target_column and target_column in df.columns:
               insights["target_analysis"] = self._target_analysis(df, target_column)
          
           suggestions = self._generate_recommendations(df, insights)
           abstract = self._create_analysis_summary(insights, suggestions)
          
           artifact = {
               "insights": insights,
               "suggestions": suggestions,
               "data_shape": df.form,
               "analysis_type": analysis_type,
               "numeric_columns": df.select_dtypes(embody=[np.number]).columns.tolist(),
               "categorical_columns": df.select_dtypes(embody=['object']).columns.tolist()
           }
          
           return abstract, artifact
          
       besides Exception as e:
           increase ToolException(f"Evaluation failed: {str(e)}")
  
   def _get_dataset_info(self, df: pd.DataFrame) -> Dict:
       return {
           "form": df.form,
           "columns": df.columns.tolist(),
           "dtypes": df.dtypes.astype(str).to_dict(),
           "missing_values": df.isnull().sum().to_dict(),
           "memory_usage": df.memory_usage(deep=True).sum()
       }
  
   def _correlation_analysis(self, df: pd.DataFrame) -> Dict:
       numeric_df = df.select_dtypes(embody=[np.number])
       if numeric_df.empty:
           return {"message": "No numeric columns for correlation evaluation"}
      
       corr_matrix = numeric_df.corr()
       strong_corr = []
       for i in vary(len(corr_matrix.columns)):
           for j in vary(i+1, len(corr_matrix.columns)):
               corr_val = corr_matrix.iloc[i, j]
               if abs(corr_val) > 0.7:
                   strong_corr.append({"var1": corr_matrix.columns[i], "var2": corr_matrix.columns[j], "correlation": spherical(corr_val, 3)})
      
       return {
           "correlation_matrix": corr_matrix.spherical(3).to_dict(),
           "strong_correlations": strong_corr,
           "avg_correlation": spherical(corr_matrix.values[np.triu_indices_from(corr_matrix.values, k=1)].imply(), 3)
       }
  
   def _clustering_analysis(self, df: pd.DataFrame, max_clusters: int) -> Dict:
       numeric_df = df.select_dtypes(embody=[np.number]).dropna()
       if numeric_df.form[0] < 2 or numeric_df.form[1] < 2:
           return {"message": "Inadequate numeric information for clustering"}
      
       scaler = StandardScaler()
       scaled_data = scaler.fit_transform(numeric_df)
      
       inertias = []
       K_range = vary(1, min(max_clusters + 1, len(numeric_df) // 2 + 1))
      
       for okay in K_range:
           kmeans = KMeans(n_clusters=okay, random_state=42, n_init=10)
           kmeans.match(scaled_data)
           inertias.append(kmeans.inertia_)
      
       optimal_k = self._find_elbow_point(inertias, K_range)
       kmeans = KMeans(n_clusters=optimal_k, random_state=42, n_init=10)
       cluster_labels = kmeans.fit_predict(scaled_data)
      
       cluster_stats = {}
       for i in vary(optimal_k):
           cluster_data = numeric_df[cluster_labels == i]
           cluster_stats[f"cluster_{i}"] = {
               "measurement": len(cluster_data),
               "share": spherical(len(cluster_data) / len(numeric_df) * 100, 1),
               "means": cluster_data.imply().spherical(3).to_dict()
           }
      
       return {
           "optimal_clusters": optimal_k,
           "cluster_stats": cluster_stats,
           "silhouette_score": spherical(silhouette_score(scaled_data, cluster_labels), 3) if len(set(cluster_labels)) > 1 else 0.0,
           "inertias": inertias
       }
  
   def _outlier_detection(self, df: pd.DataFrame) -> Dict:
       numeric_df = df.select_dtypes(embody=[np.number])
       if numeric_df.empty:
           return {"message": "No numeric columns for outlier detection"}
      
       outliers = {}
       for col in numeric_df.columns:
           information = numeric_df[col].dropna()
           Q1, Q3 = information.quantile(0.25), information.quantile(0.75)
           IQR = Q3 - Q1
           iqr_outliers = information[(data < Q1 - 1.5 * IQR) | (data > Q3 + 1.5 * IQR)]
           z_scores = np.abs((information - information.imply()) / information.std())
           z_outliers = information[z_scores > 3]
          
           outliers[col] = {
               "iqr_outliers": len(iqr_outliers),
               "z_score_outliers": len(z_outliers),
               "outlier_percentage": spherical(len(iqr_outliers) / len(information) * 100, 2)
           }
      
       return outliers
  
   def _target_analysis(self, df: pd.DataFrame, target_col: str) -> Dict:
       if target_col not in df.columns:
           return {"error": f"Column {target_col} not discovered"}
      
       target_data = df[target_col].dropna()
      
       if pd.api.varieties.is_numeric_dtype(target_data):
           return {
               "sort": "numeric",
               "stats": {
                   "imply": spherical(target_data.imply(), 3),
                   "median": spherical(target_data.median(), 3),
                   "std": spherical(target_data.std(), 3),
                   "skewness": spherical(target_data.skew(), 3),
                   "kurtosis": spherical(target_data.kurtosis(), 3)
               },
               "distribution": "regular" if abs(target_data.skew()) < 0.5 else "skewed"
           }
       else:
           value_counts = target_data.value_counts()
           return {
               "sort": "categorical",
               "unique_values": len(value_counts),
               "most_common": value_counts.head(5).to_dict(),
               "entropy": spherical(-sum((p := value_counts / len(target_data)) * np.log2(p + 1e-10)), 3)
           }
  
   def _generate_recommendations(self, df: pd.DataFrame, insights: Dict) -> Record[str]:
       suggestions = []
      
       missing_pct = sum(insights["dataset_info"]["missing_values"].values()) / (df.form[0] * df.form[1]) * 100
       if missing_pct > 10:
           suggestions.append(f"Think about information imputation - {missing_pct:.1f}% lacking values detected")
      
       if "correlation_analysis" in insights and insights["correlation_analysis"].get("strong_correlations"):
           suggestions.append("Sturdy correlations detected - contemplate characteristic choice or dimensionality discount")
      
       if "clustering_analysis" in insights:
           cluster_info = insights["clustering_analysis"]
           if isinstance(cluster_info, dict) and "optimal_clusters" in cluster_info:
               suggestions.append(f"Knowledge segments into {cluster_info['optimal_clusters']} distinct teams - helpful for focused methods")
      
       if "outlier_detection" in insights:
           high_outlier_cols = [col for col, info in insights["outlier_detection"].objects() if isinstance(information, dict) and information.get("outlier_percentage", 0) > 5]
           if high_outlier_cols:
               suggestions.append(f"Excessive outlier share in: {', '.be a part of(high_outlier_cols)} - examine information high quality")
      
       return suggestions if suggestions else ["Data appears well-structured with no immediate concerns"]
  
   def _create_analysis_summary(self, insights: Dict, suggestions: Record[str]) -> str:
       dataset_info = insights["dataset_info"]
       abstract = f"""📊 INTELLIGENT DATA ANALYSIS COMPLETE


Dataset Overview: {dataset_info['shape'][0]} rows × {dataset_info['shape'][1]} columns
Numeric Options: {len([c for c, t in dataset_info['dtypes'].objects() if 'int' in t or 'float' in t])}
Categorical Options: {len([c for c, t in dataset_info['dtypes'].objects() if 'object' in t])}


Key Insights Generated:
• Statistical correlations and relationships recognized
• Clustering patterns found for segmentation
• Outlier detection accomplished for information high quality evaluation
• Function significance and distribution evaluation carried out


Prime Suggestions:
{chr(10).be a part of('• ' + rec for rec in suggestions[:3])}


Evaluation consists of ML-powered clustering, statistical correlations, and actionable enterprise insights."""
      
       return abstract
  
   def _find_elbow_point(self, inertias: Record[float], k_range: vary) -> int:
       if len(inertias) < 3:
           return record(k_range)[0]
       diffs = [inertias[i-1] - inertias[i] for i in vary(1, len(inertias))]
       return record(k_range)[diffs.index(max(diffs)) + 1] if diffs else record(k_range)[0]
Tags: agentsAnalysisBuildCombineCustomLearningMachineStatisticaltools
Admin

Admin

Next Post
How To Use Paid Search & Social Adverts For Selling Occasions

How To Use Paid Search & Social Advertisements For Selling Occasions

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended.

Star Wars and The Mandalorian Invade Monopoly Go

Star Wars and The Mandalorian Invade Monopoly Go

April 18, 2025
What’s Key phrase Stuffing? Easy methods to Keep away from Doing web optimization Like It is 2005

What’s Key phrase Stuffing? Easy methods to Keep away from Doing web optimization Like It is 2005

May 19, 2025

Trending.

New Win-DDoS Flaws Let Attackers Flip Public Area Controllers into DDoS Botnet through RPC, LDAP

New Win-DDoS Flaws Let Attackers Flip Public Area Controllers into DDoS Botnet through RPC, LDAP

August 11, 2025
Microsoft Launched VibeVoice-1.5B: An Open-Supply Textual content-to-Speech Mannequin that may Synthesize as much as 90 Minutes of Speech with 4 Distinct Audio system

Microsoft Launched VibeVoice-1.5B: An Open-Supply Textual content-to-Speech Mannequin that may Synthesize as much as 90 Minutes of Speech with 4 Distinct Audio system

August 25, 2025
Stealth Syscall Method Permits Hackers to Evade Occasion Tracing and EDR Detection

Stealth Syscall Method Permits Hackers to Evade Occasion Tracing and EDR Detection

June 2, 2025
Qilin Ransomware Makes use of TPwSav.sys Driver to Bypass EDR Safety Measures

Qilin Ransomware Makes use of TPwSav.sys Driver to Bypass EDR Safety Measures

July 31, 2025
How you can open the Antechamber and all lever places in Blue Prince

How you can open the Antechamber and all lever places in Blue Prince

April 14, 2025

AimactGrow

Welcome to AimactGrow, your ultimate source for all things technology! Our mission is to provide insightful, up-to-date content on the latest advancements in technology, coding, gaming, digital marketing, SEO, cybersecurity, and artificial intelligence (AI).

Categories

  • AI
  • Coding
  • Cybersecurity
  • Digital marketing
  • Gaming
  • SEO
  • Technology

Recent News

The Evolution of AI Protocols: Why Mannequin Context Protocol (MCP) Might Change into the New HTTP for AI

The Evolution of AI Protocols: Why Mannequin Context Protocol (MCP) Might Change into the New HTTP for AI

August 27, 2025
The way to generate leads out of your web site (16 professional ideas)

The way to generate leads out of your web site (16 professional ideas)

August 27, 2025
  • About Us
  • Privacy Policy
  • Disclaimer
  • Contact Us

© 2025 https://blog.aimactgrow.com/ - All Rights Reserved

No Result
View All Result
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing

© 2025 https://blog.aimactgrow.com/ - All Rights Reserved