• About Us
  • Privacy Policy
  • Disclaimer
  • Contact Us
AimactGrow
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing
No Result
View All Result
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing
No Result
View All Result
AimactGrow
No Result
View All Result

Constructing an Superior Portfolio Evaluation and Market Intelligence Device with OpenBB

Admin by Admin
August 11, 2025
Home AI
Share on FacebookShare on Twitter


On this tutorial, we dive deep into the superior capabilities of OpenBB to carry out complete portfolio evaluation and market intelligence. We begin by establishing a tech-focused portfolio, fetching historic market information, and computing key efficiency metrics. We then discover superior technical indicators, sector-level efficiency, market sentiment, and correlation-based danger evaluation. Alongside the way in which, we combine visualizations and insights to make the evaluation extra intuitive and actionable, guaranteeing that we cowl each the quantitative and qualitative facets of funding decision-making. Take a look at the Full Codes right here.

!pip set up openbb[all] --quiet


import warnings
warnings.filterwarnings('ignore')


import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from datetime import datetime, timedelta
import openbb


from openbb import obb


pd.set_option('show.max_columns', None)
pd.set_option('show.width', 1000)


print("🚀 Superior OpenBB Monetary Evaluation Tutorial")
print("=" * 60)

We start by putting in and importing OpenBB together with important Python libraries for information evaluation and visualization. We configure our surroundings to suppress warnings, set show choices for pandas, and prepare to carry out superior monetary evaluation. Take a look at the Full Codes right here.

print("n📊 1. BUILDING AND ANALYZING A TECH PORTFOLIO")
print("-" * 50)


tech_stocks = ['AAPL', 'GOOGL', 'MSFT', 'TSLA', 'NVDA']
initial_weights = [0.25, 0.20, 0.25, 0.15, 0.15]


end_date = datetime.now().strftime('%Y-%m-%d')
start_date = (datetime.now() - timedelta(days=365)).strftime('%Y-%m-%d')


portfolio_data = {}
portfolio_returns = pd.DataFrame()
successful_stocks = []


print(f"Fetching information from {start_date} to {end_date}...")


for i, image in enumerate(tech_stocks):
   attempt:
       information = obb.fairness.value.historic(image=image, start_date=start_date, end_date=end_date)
       df = information.to_df()
      
       if df.index.duplicated().any():
           df = df[~df.index.duplicated(keep='first')]
      
       portfolio_data[symbol] = df
      
       returns = df['close'].pct_change().dropna()
       portfolio_returns[symbol] = returns
       successful_stocks.append(image)
      
       print(f"✅ {image}: {len(df)} days of information")
   besides Exception as e:
       print(f"❌ Error fetching {image}: {str(e)}")


if successful_stocks:
   successful_indices = [tech_stocks.index(stock) for stock in successful_stocks]
   portfolio_weights = [initial_weights[i] for i in successful_indices]
   total_weight = sum(portfolio_weights)
   portfolio_weights = [w/total_weight for w in portfolio_weights]
  
   print(f"n📋 Portfolio composition (normalized weights):")
   for inventory, weight in zip(successful_stocks, portfolio_weights):
       print(f"  {inventory}: {weight:.1%}")
else:
   portfolio_weights = []


print("n📈 2. PORTFOLIO PERFORMANCE ANALYSIS")
print("-" * 50)


if not portfolio_returns.empty and portfolio_weights:
   weighted_returns = (portfolio_returns * portfolio_weights).sum(axis=1)
  
   annual_return = weighted_returns.imply() * 252
   annual_volatility = weighted_returns.std() * np.sqrt(252)
   sharpe_ratio = annual_return / annual_volatility if annual_volatility > 0 else 0
   max_drawdown = (weighted_returns.cumsum().increasing().max() - weighted_returns.cumsum()).max()
  
   print(f"Portfolio Annual Return: {annual_return:.2%}")
   print(f"Portfolio Volatility: {annual_volatility:.2%}")
   print(f"Sharpe Ratio: {sharpe_ratio:.3f}")
   print(f"Max Drawdown: {max_drawdown:.2%}")
  
   print("n📊 Particular person Inventory Efficiency:")
   for inventory in successful_stocks:
       stock_return = portfolio_returns[stock].imply() * 252
       stock_vol = portfolio_returns[stock].std() * np.sqrt(252)
       print(f"{inventory}: Return {stock_return:.2%}, Volatility {stock_vol:.2%}")
else:
   print("❌ No legitimate portfolio information obtainable for evaluation")

We construct a tech portfolio, fetch a 12 months of costs with OpenBB, compute normalized weights and each day returns, then consider efficiency, annual return, volatility, Sharpe, max drawdown, and evaluation stock-wise stats in actual time. Take a look at the Full Codes right here.

print("n🔍 3. ADVANCED TECHNICAL ANALYSIS")
print("-" * 50)


image="NVDA"
attempt:
   price_data = obb.fairness.value.historic(image=image, start_date=start_date, end_date=end_date)
   df = price_data.to_df()
  
   df['SMA_20'] = df['close'].rolling(window=20).imply()
   df['SMA_50'] = df['close'].rolling(window=50).imply()
   df['EMA_12'] = df['close'].ewm(span=12).imply()
   df['EMA_26'] = df['close'].ewm(span=26).imply()
  
   df['MACD'] = df['EMA_12'] - df['EMA_26']
   df['MACD_signal'] = df['MACD'].ewm(span=9).imply()
  
   delta = df['close'].diff()
   acquire = (delta.the place(delta > 0, 0)).rolling(window=14).imply()
   loss = (-delta.the place(delta < 0, 0)).rolling(window=14).imply()
   rs = acquire / loss
   df['RSI'] = 100 - (100 / (1 + rs))
  
   df['BB_middle'] = df['close'].rolling(window=20).imply()
   bb_std = df['close'].rolling(window=20).std()
   df['BB_upper'] = df['BB_middle'] + (bb_std * 2)
   df['BB_lower'] = df['BB_middle'] - (bb_std * 2)
  
   current_price = df['close'].iloc[-1]
   current_rsi = df['RSI'].iloc[-1]
   macd_signal = "BUY" if df['MACD'].iloc[-1] > df['MACD_signal'].iloc[-1] else "SELL"
   price_vs_sma20 = "Above" if current_price > df['SMA_20'].iloc[-1] else "Beneath"
  
   print(f"n{image} Technical Evaluation:")
   print(f"Present Worth: ${current_price:.2f}")
   print(f"RSI (14): {current_rsi:.2f} ({'Overbought' if current_rsi > 70 else 'Oversold' if current_rsi < 30 else 'Impartial'})")
   print(f"MACD Sign: {macd_signal}")
   print(f"Worth vs SMA(20): {price_vs_sma20}")
  
besides Exception as e:
   print(f"Error in technical evaluation: {str(e)}")


print("n🏭 4. SECTOR ANALYSIS & STOCK SCREENING")
print("-" * 50)


sectors = {
   'Know-how': ['AAPL', 'GOOGL', 'MSFT'],
   'Electrical Automobiles': ['TSLA', 'RIVN', 'LCID'],
   'Semiconductors': ['NVDA', 'AMD', 'INTC']
}


sector_performance = {}


for sector_name, shares in sectors.objects():
   sector_returns = []
   for inventory in shares:
       attempt:
           information = obb.fairness.value.historic(image=inventory, start_date=start_date, end_date=end_date)
           df = information.to_df()
           if df.index.duplicated().any():
               df = df[~df.index.duplicated(keep='first')]
           returns = df['close'].pct_change().dropna()
           sector_returns.append(returns.imply() * 252)
       besides Exception as e:
           print(f"❌ Did not fetch {inventory}: {str(e)}")
           proceed
  
   if sector_returns:
       avg_return = np.imply(sector_returns)
       sector_performance[sector_name] = avg_return
       print(f"{sector_name}: {avg_return:.2%} common annual return")


print("n📰 5. MARKET SENTIMENT ANALYSIS")
print("-" * 50)


for image in successful_stocks[:2]: 
   attempt:
       information = obb.information.firm(image=image, restrict=3)
       news_df = information.to_df()
       print(f"n{image} Latest Information Headlines:")
       for idx, row in news_df.iterrows():
           print(f"• {row.get('title', 'N/A')[:80]}...")
           break 
   besides Exception as e:
       print(f"Information not obtainable for {image}: {str(e)}")

We run superior technical evaluation on NVDA, calculating SMAs, EMAs, MACD, RSI, and Bollinger Bands, to gauge momentum and potential entry/exit alerts. We then display sectors by annualized returns throughout Know-how, EVs, and Semiconductors, and we pull contemporary firm headlines to fold market sentiment into our thesis. Take a look at the Full Codes right here.

print("n⚠️  6. RISK ANALYSIS")
print("-" * 50)


if not portfolio_returns.empty and len(portfolio_returns.columns) > 1:
   correlation_matrix = portfolio_returns.corr()
   print("nPortfolio Correlation Matrix:")
   print(correlation_matrix.spherical(3))
  
   portfolio_var = np.dot(portfolio_weights, np.dot(correlation_matrix *
                         (portfolio_returns.std().values.reshape(-1,1) *
                          portfolio_returns.std().values.reshape(1,-1)),
                         portfolio_weights))
   portfolio_risk = np.sqrt(portfolio_var) * np.sqrt(252)
   print(f"nPortfolio Danger (Volatility): {portfolio_risk:.2%}")


print("n📊 7. CREATING PERFORMANCE VISUALIZATIONS")
print("-" * 50)


if not portfolio_returns.empty:
   fig, axes = plt.subplots(2, 2, figsize=(15, 10))
   fig.suptitle('Portfolio Evaluation Dashboard', fontsize=16)
  
   cumulative_returns = (1 + portfolio_returns).cumprod()
   cumulative_returns.plot(ax=axes[0,0], title="Cumulative Returns", alpha=0.7)
   axes[0,0].legend(bbox_to_anchor=(1.05, 1), loc="higher left")
  
   rolling_vol = portfolio_returns.rolling(window=30).std() * np.sqrt(252)
   rolling_vol.plot(ax=axes[0,1], title="30-Day Rolling Volatility", alpha=0.7)
   axes[0,1].legend(bbox_to_anchor=(1.05, 1), loc="higher left")
  
   weighted_returns.hist(bins=50, ax=axes[1,0], alpha=0.7)
   axes[1,0].set_title('Portfolio Returns Distribution')
   axes[1,0].axvline(weighted_returns.imply(), shade="pink", linestyle="--", label="Imply")
   axes[1,0].legend()
  
   if len(correlation_matrix) > 1:
       sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', heart=0, ax=axes[1,1])
       axes[1,1].set_title('Correlation Matrix')
  
   plt.tight_layout()
   plt.present()


print("n🎯 8. INVESTMENT SUMMARY & RECOMMENDATIONS")
print("-" * 50)


print("Portfolio Evaluation Full!")
print(f"✅ Analyzed {len(successful_stocks)} shares")
print(f"✅ Calculated {len(sector_performance)} sector performances")
print(f"✅ Generated technical indicators and danger metrics")


if not portfolio_returns.empty and len(successful_stocks) > 0:
   best_performer = portfolio_returns.imply().idxmax()
   worst_performer = portfolio_returns.imply().idxmin()
   print(f"🏆 Greatest Performer: {best_performer}")
   print(f"📉 Worst Performer: {worst_performer}")


print("n💡 Key Insights:")
print("• Diversification throughout tech sectors reduces portfolio danger")
print("• Technical indicators assist determine entry/exit factors")
print("• Common rebalancing maintains goal allocations")
print("• Monitor correlations to keep away from focus danger")


print("n🔧 Subsequent Steps:")
print("• Backtest totally different allocation methods")
print("• Add basic evaluation metrics")
print("• Implement automated alerts for technical alerts")
print("• Discover ESG and factor-based screening")


print("n" + "="*60)
print("OpenBB Superior Tutorial Full! 🎉")
print("Go to https://openbb.co for extra options and documentation")

We quantify portfolio danger through correlations and annualized volatility, visualize efficiency with cumulative returns, rolling volatility, return distribution, and a correlation heatmap, then conclude with greatest/worst performers, key insights (diversification, alerts, rebalancing), and concrete subsequent steps like backtesting, including fundamentals, alerts, and ESG screening.

In conclusion, we have now efficiently leveraged OpenBB to construct, analyze, and visualize a diversified portfolio whereas extracting sector insights, technical alerts, and danger metrics. We see how combining efficiency statistics with market sentiment and superior visualizations empowers us to make knowledgeable funding choices. This strategy permits us to repeatedly monitor and refine our methods, guaranteeing that we stay agile in altering market circumstances and assured within the data-driven selections we make.


Sana Hassan, a consulting intern at Marktechpost and dual-degree pupil at IIT Madras, is enthusiastic about making use of expertise and AI to handle real-world challenges. With a eager curiosity in fixing sensible issues, he brings a contemporary perspective to the intersection of AI and real-life options.

Tags: advancedAnalysisBuildingIntelligenceMarketOpenBBPortfoliotool
Admin

Admin

Next Post
Google Clicks To Websites Secure, Volatility Cooled & Heated, AI Mode Advertisements, GPT-5 & Sullivan Drops Liaison

Google Clicks To Websites Secure, Volatility Cooled & Heated, AI Mode Advertisements, GPT-5 & Sullivan Drops Liaison

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended.

I Ran 10 Prompts to See Who Wins

I Ran 10 Prompts to See Who Wins

April 21, 2025
The Obtain: Saving the US local weather packages, and America’s AI protections are underneath risk

The Obtain: Saving the US local weather packages, and America’s AI protections are underneath risk

July 27, 2025

Trending.

How you can open the Antechamber and all lever places in Blue Prince

How you can open the Antechamber and all lever places in Blue Prince

April 14, 2025
7 Finest EOR Platforms for Software program Firms in 2025

7 Finest EOR Platforms for Software program Firms in 2025

June 18, 2025
Expedition 33 Guides, Codex, and Construct Planner

Expedition 33 Guides, Codex, and Construct Planner

April 26, 2025
ManageEngine Trade Reporter Plus Vulnerability Allows Distant Code Execution

ManageEngine Trade Reporter Plus Vulnerability Allows Distant Code Execution

June 10, 2025
The most effective methods to take notes for Blue Prince, from Blue Prince followers

The most effective methods to take notes for Blue Prince, from Blue Prince followers

April 20, 2025

AimactGrow

Welcome to AimactGrow, your ultimate source for all things technology! Our mission is to provide insightful, up-to-date content on the latest advancements in technology, coding, gaming, digital marketing, SEO, cybersecurity, and artificial intelligence (AI).

Categories

  • AI
  • Coding
  • Cybersecurity
  • Digital marketing
  • Gaming
  • SEO
  • Technology

Recent News

Why Has There By no means Been a Dragon Age: Origins Remaster? BioWare Exec Explains Previous Plans and Continued Difficulties

Why Has There By no means Been a Dragon Age: Origins Remaster? BioWare Exec Explains Previous Plans and Continued Difficulties

August 11, 2025
2025 Creator Economic system Statistics: How Software program Drives Incomes

2025 Creator Economic system Statistics: How Software program Drives Incomes

August 11, 2025
  • About Us
  • Privacy Policy
  • Disclaimer
  • Contact Us

© 2025 https://blog.aimactgrow.com/ - All Rights Reserved

No Result
View All Result
  • Home
  • Technology
  • AI
  • SEO
  • Coding
  • Gaming
  • Cybersecurity
  • Digital marketing

© 2025 https://blog.aimactgrow.com/ - All Rights Reserved